另外,当前药物成本逐渐升高,这样一种研发的重大转变,应该从逻辑上以较低的价格到达消费者端或者支付端。
Tufts药物开发研究中心2014年的一项研究显示,一款上市新药的平均药物研发成本在10年内增长了145%。
Pande博士预测,通过实现两个重要的行业里程碑,AI可能会导致药品价格降低。 他说:“一是大大缩短开发时间,开发时间的压缩是巨大的。”
这里的理由是,更快地进入市场可以解决生物制药公司面临的一个主要问题—— 缺乏专利以获得市场专有权来收回研发费用。
2016年5月23日,一篇发表在科学《SpringerPlus》上的文章指出,一款新药从最初的专利申请到获得监管部门批准平均需要12到13年,最后只剩下7到8年的专利期获得市场排他性。研究人员的结论是,“大部分新药都没有足够的时间来收回前期的研发费用,并且获得投资的正面回报。”
Pande博士说:“如果我们能够更快地开发成功,就可以有更多的时间来摊销成本。这点特别吸引人。”
AI可能影响药价的第二种方法是提高临床试验的成功率。根据2016年10月3日《Clinical Leader》的一篇文章,临床试验失败的成本估计在8亿美元至14亿美元之间,相当于平均26亿美元的新药开发成本的三分之一到一半以上。
Pande博士说,除了这两个“简单的胜利”之外,AI可能会以人们无法期望的方式在某些领域产生影响。他说:“我们看到的一个领域是数字疗法的兴起。这些是用于行为疗法的软件程序,通常是关于认知行为疗法。”
例如,他指出,美国疾病控制和预防中心(The U.S. Centers for Disease Control and Prevention)进行的糖尿病预防项目显示,对2型糖尿病的行为疗法比药物二甲双胍更有效。
他说:“另一个有趣的领域是,你可以结合数字治疗和现有的小(药物)。你甚至可以用低成本方式,将一个非专利药物做成同类最好的药物。”
Smarason先生说,还没有直接与AI相关的产品被批准。 “但是我会说,我们肯定会在10年的时间框架内,看到一些跟AI相关的重要(药物)产品面世。”
根据Hopkins博士的观点,目前AI面临的挑战之一是要求“药物研发领域专家定义合理的问题。如果提出的问题太宏大,相关数据不足,提交给AI的问题就会不完善。”
Deshpande博士说,另一个挑战是获得“高质量和一致性的数据来训练算法。目前数据通常保存在孤岛中,并且跨越多个组织。”
Lanza博士补充说,克服传统的研发文化也是一个挑战。 他说:“人工智能本质上意味着不可以解释,而是更多地用作‘黑匣子’。我经常听到,为了使这些预测预言,科学家们想知道AI是如何做到的。 这是通常思考AI的错误方式。关键是,这些算法可以看到的数据中的信号对于人类而言太窄或太宽。因此,如果我们要求人工智能产生人为可解释的结果,就可能AI去解决最有趣的问题。”