用概率统计的思,你就知道考试是由三方面决定的。一、水平(期望);二、稳定性(方差),以上两点决定了你分数的概率分布;三、运气(最后落在哪一个样本上)。
所以面对比较有希望的考试,或者高考这样考在每个分数都有用的考试,你应该做的是增加期望,减小方差两方面努力,就是努力做题目(提高期望),做题目做得面面俱到(减小方差)。
面对如数学竞赛这样考不上一等啥用都没有的考试,而你水平恰恰又差一个档次,希望相对较小,这时你要做的呢,就是努力做题目(提高期望),把最重要最可能考的类型钻研到很深,不太可能考的就算了(增加方差)。
第一,高等数学,这门课通用性之广可能是你所想不到的,举个例子(因为我是机电专业,故而例子大部分是机电设计):
PID 控制器,P 是比例,I 是积分,D 是微分,PID 控制器可以模拟电,也可以是数字系统来模拟的电,例如用单片机来模拟,但无论哪种方法,都涉及系统的参数设定,顾名思义,PID 需要比例参数,积分参数,微分参数,这三者的确定以及之后的运算,均是在高等数学的基础上的。
液压伺服阀,对于液压方面的计算,其实原理应用均为「流体力学」,对于流体力学,你们日后大概会接触到,通用公式,基本上都是需要高数基础来推导的。详情请去图书馆借阅《液体力学》 。
第二,线性代数,这门课,说实话,更是牛 B,我想你在高中时代肯定学过坐标系的转换,例如坐标平移,极坐标转换等等。那你现在想一个问题,给你一个两关节机械手,你如何控制这个机械手的运动问题,我如何控制各个伺服电机来决定这些机械的运动与力的大小呢?这些问题在《机器人运动学》与《机器人动力学》中有详细的探讨,如果让我告诉你,它们运用到的知识,可以这么说,用的是「矩阵」,我想通过线代的学习,你应该对它不会陌生,对矩阵的运算,如求逆阵啦,伴随阵啦,都需要。这只是在我了解的领域内知道的线代应用。
第三,概率与统计,我想这个不用我多说了,古典概率不必多讲,生活中用到它的情况比比皆是,还有一些实例,我想在课本上应该有所涉及,如医学上,用概率论来判断一种新型药物是否有效。统计呢,这个……以后你到公司里,不能一涉及账单就找财务吧,那财务还不忙死……还有很多问题账务也处理不了,因为如果涉及工业工程,学经济的财务还真不一定懂,你可以看一下《工程经济学》,这里面有很多统计方面的应用。
第四,几何学,对于一些经典的几何模型,其实我们每天都在用到,例如求圆周长,面积,求一些标准体的体积等等,只不过我们把这些知识划归了常识。而现代文明仅仅是这些基本的几何知识是远远不够的,所以我们要用很多高等数学的知识来解决一些几何问题,例如几何学中的一个重要的分支——解析几何,工程中常用的 Pro/E 三维软件,只要你构建了一个几何体,无论它有多么的不规则,只需要点一下求体积的按键,它就能给你算出来,如何实现呢?电脑运算快,但不智能,所以算法要你来写,用程序写出来,这些算法,其实就是高等数学中的解析几何啦,当然,不会那么简单,其中定然还要用到一些更高深的数学,例如一些有限元的算法之类的。(没有深入了解过 Pro/E 中的求体积算法,如若有误还请见谅)