原标题:高等数学、线性代数、概率论与数理统计、几何学这些知识可以用来干什么?主要应用有哪些?
其他三项,不研究少数工科确实没用,但概率统计真乃应用数学之王。鄙人学业从数学院开始,以经济学院结束,现在在证券公司做苦逼行业研究,深有体会。
概率统计抛开了数学中的「确定性」,以「不确定性」的视角看待世界,并且做出了「量化不确定性」的壮志,这种气魄,真的不是其他数学分支能够比拟的。
大多数数学分支,比如数学分析(对不起,高等数学这么业余的词我实在不习惯),都是站在高峰看人类,是的视角,研究出美轮美奂的数学框架。
在社会中,并不存在「给你一个因为,你还给我一个所以」的确定性。一切社会规律,都需要概率统计来挖掘!所以,绝大多数社会科学最终都会通过概率统计量化,这也是现在「经济学帝国主义」泛滥的原因——毕竟经济学是数学渗透最狠的社会科学了。
经济学中,被称为恐怕是经济学最准确的是恩格尔系数:随着收入的提高,食物消费比重下降。这个如果没有概率统计的挖掘,仅仅凭眼睛去看是无效的。
因为恩格尔系数,如果翻译成数学语言:其实是「当收入提高时,在 90%的情况下,食物消费比重有所下降」。只有明白了这一点,才能够有力驳斥对恩格尔系数的质疑——毕竟你总能找到增加了一点收入就去吃一顿大餐的反例。
游戏营销中有一个很有用的指标,叫做 ARPU 值。即平均每用户收入,一个游戏 1 千万用户,每个月收入 5 千万,那么月 ARPU 就是 5 元。
学了概率统计的人,就应该很地意识到,5 元的 ARPU 值,不是每多一个用户,就多 5 块钱的收入。5 元只是期望(均值),但是期望仅仅是数据分布中的一个重要指标而已,即使加上方差,也不能反映全部。
一旦用概率统计分析游戏的差别,就会发现,同样 ARPU 值为 5 的手机游戏,中国游戏方差极大,而海外游戏方差小很多。
所以继续深挖,采用另一个统计指标 ARPPU,平均每付费用户收入。(上述游戏,如果有 100 万付费用户,ARPPU 为 50)
这个时候,你就能发现,同样是 ARPU 为 5 元的游戏,国内 ARPP可能是 100,而海外的是 30。
那么你需要做什么呢?这个时候经营过的人就能想出,面对海外市场,你应该扩大流量,让游戏好玩。面对国内市场,你要伺候好土豪,比如分级客服(交钱最多的 VIP1,其次的 VIP2,等等),比如弄几个人和金主土豪陪玩坑钱,等等等等。