从应用层面来看,由于我们更好地考虑了实际调度中的不确定因素,通过上述方法进行单车调动,相较于传统模型可以大幅提升调度效率,,从而减少用户想找车却找不到的情况发生,使得单车系统服务的人数实现最大化,且进一步提升用户体验。
随着城市化的快速发展,中国的大多数城市正经历着严重的空气污染问题。预测未来空气质量不仅可以帮更好地做出决策,也可以帮助人们规划未来出行计划。基于空气质量数据、气象数据和天气预据,借助大气科学领域的专业知识,我们提出了一种基于深度学习的预测方法DeepAir来预测未来48小时细粒度空气质量。
中国于 2012 年开始对 PM2.5 进行,在 5 年前,可用数据点只有几千个,小样本问题是进行预测的一大障碍。如今,全国有超过 200 个城市、数千个站点在以小时为单位记录空气质量数据,数据量的极大丰富让研究者思考深度学习能否更好地解决问题。研究者发现深度学习在拐点预测方面有较大提升。
空气质量预测既需要考虑到大颗粒悬浮物,也要考虑污染物,是一项“既要看天,也要看人”的时空细粒度预测,它影响因素众多,且不可直接观测,需要应用机器学习模拟诸多影响因素的变化。在空气质量预测中,拐点预测尤为重要:它与工厂停工、学生停课等城市管理决策执行息息相关。
在深度学习处理时空数据时,数据和属性捕捉是两大重点。深度分布式融合网络设计了针对空气质量指数的特定的数据归集合并的方法,进行数据维度对齐和滤噪,然后把气象、 天气、其他污染物等因素引入,进行嵌入(embedding)后,利用不同的融合网络分别学习 AQI 受整体和各因素分别的影响权重,最后得出预测结果。这种方法很好地捕捉了空气质量骤变。准确率提高到接近 50%。
预测未来48小时细粒度空气质量,不仅是让居民精确知晓自己周边的空气质量如何、更健康的规划出行,还可帮助追溯污染源,并科学决策控制污染的措施。
违章停车是大城市中普遍存在的问题。占道的违章停车引起交通拥堵,也会引发交通事故。仅仅通过目前的巡逻、摄像方案,很难覆盖整个城市,并且会耗费的不小的人力物力。近年来,共享单车的兴起产生了大量且质量高的轨迹数据,为我们检测违章停车提供了新的机遇。因为我们观察到,大多数违章停车发生在边,会对自行车骑行轨迹造成影响。为此,我们提出了基于共享单车轨迹数据的违章停车检测技术。
这项工作包括一个预处理模块,进行有针对性的相应轨迹清洗、网匹配、轨迹索引;以及一个检测模块,基于假设检验与轨迹融合进行检测。