经济学应用高等代数具有重大的意义,主要表现为增强了经济学的适用性、科学性、客观性、规律性等,具体分析如下:第一,经济学应用高等代数,增强了经济学的适用性。经济学在古诺之前,研究的主要问题是对经济现象的描述,注重经济现象的分析与归纳,而且往往是对宏观大方向经济现象的研究,并没有对日常生活中的经济现象进行分析,因此造成了经济学属于形而上的一门学科。而在古诺之后,以高等代数为基础的经济学研究,开始关注经济学中较为常见的现象,研究的问题也不再是描述问题,而是透过问题研究问题的实质,从而为经济学的发展打开了一条新的出,同时也增强了经济学的适用性。这方面主要体现在经济学家把高等代数应用在微观经济学领域,通过对经济活动中市场主体的研究,能够使人们更加清楚市场主体如何自身的经济利益,如何安排生产活动取得最大的效益等,这不仅有利于市场主体对自身的认识,同时也为更好的管理生产活动奠定了基础。第二,经济学应用高等代数,增强了经济学的科学性。经济学学科从实质上来说,具有很强的科学性,但是,在经济学发展的早期,经济学的科学性并不强,因此,经济学家们在研究经济现象时,也只能停留在研究结论上,并不能对实际生产、生活给予正确的指导。因此,当高等代数成为经济学研究的基本工具之后,经济学家们研究出来的结论,建立的经济学模型对实际生活、生产具有了深入的认识,也能够指导人们进行生产,在总结一些经济现象时,人们也能通过经济学分析,寻找到其背后的理论依据,从而使得经济学学科真正的迈入了科学之门。这方面主要体现在经济学家利用高等代数模型来解释复杂的宏观经济现象,如上文提到的货币政策的解释,这不仅有利于经济学家认识货币政策的作用,还能够帮助国家认识到如何制定科学的货币政策,从而为制定科学合理的货币政策奠定基础。第三,经济学应用高等代数,增强了经济学的客观性。经济学的研究,是以研究经济现象为着手点,对其进行系统、深入的解读,特别是在经济学应用高等代数之后,经济学的研究也从经济学家的主观臆断变成了数据分析,不但增强了经济学研究的科学性,也增强了经济学研究的客观性,使得经济学研究的结论更有信服力,也了经济学研究的定量分析。这主要是因为高等代数本身的客观性,以往经济学家对经济现象的描述,往往只是根据观察到的现象来进行定性分析,这不仅了经济学家个人对经济现象的评价,同时也对经济现象的阐释不够深入具体,难免会让人们对经济现象、经济规律的了解、认识误入,从而影响对经济现象的判断。第四,经济学应用高等代数,增强了经济学的规律性。经济学的研究,通过一代又一代经济学家的努力,经济学研究也越来越有规律性,无论是对经济现象的研究,还是对经济活动的阐释,经济学研究在应用高等代数之后,能够阐释的更为合理,对规律的掌握也越来越准确,从而建立起来了一个又一个经济学模型,把纷繁复杂的经济现象简单化,进而大大加强了人们对经济学的认识,对经济现象的认识,能够指导人们清楚的判断生产的利和弊,达到优化生产的目的。这主要是因为高等代数本身具有极强的规律性,通过利用高等代数研究经济现象,就能透过经济现象认识到其背后隐含的经济规律,在通过经济学家的阐释,从而使经济学的规律性更加明显。